Ordering trees with n vertices and matching number q by their largest Laplacian eigenvalues

نویسنده

  • Shu-Guang Guo
چکیده

Denote by Tn,q the set of trees with n vertices and matching number q. Guo [On the Laplacian spectral radius of a tree, Linear Algebra Appl. 368 (2003) 379–385] gave the tree in Tn,q with the greatest value of the largest Laplacian eigenvalue. In this paper, we give another proof of this result. Using our method, we can go further beyond Guo by giving the tree in Tn,q with the second largest value of the largest Laplacian eigenvalue. © 2007 Elsevier B.V. All rights reserved.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Signless Laplacian Estrada Index of Unicyclic Graphs

‎For a simple graph $G$‎, ‎the signless Laplacian Estrada index is defined as $SLEE(G)=sum^{n}_{i=1}e^{q^{}_i}$‎, ‎where $q^{}_1‎, ‎q^{}_2‎, ‎dots‎, ‎q^{}_n$ are the eigenvalues of the signless Laplacian matrix of $G$‎. ‎In this paper‎, ‎we first characterize the unicyclic graphs with the first two largest and smallest $SLEE$'s and then determine the unique unicyclic graph with maximum $SLEE$ a...

متن کامل

SIGNLESS LAPLACIAN SPECTRAL MOMENTS OF GRAPHS AND ORDERING SOME GRAPHS WITH RESPECT TO THEM

Let $G = (V, E)$ be a simple graph. Denote by $D(G)$ the diagonal matrix $diag(d_1,cdots,d_n)$, where $d_i$ is the degree of vertex $i$  and  $A(G)$ the adjacency matrix of $G$. The  signless Laplacianmatrix of $G$ is $Q(G) = D(G) + A(G)$ and the $k-$th signless Laplacian spectral moment of  graph $G$ is defined as $T_k(G)=sum_{i=1}^{n}q_i^{k}$, $kgeqslant 0$, where $q_1$,$q_2$, $cdots$, $q_n$ ...

متن کامل

Ordering trees by their Laplacian spectral radii

Denote by Tn the set of trees on n vertices. Zhang and Li [X.D. Zang, J.S. Li, The two largest eigenvalues of Laplacian matrices of trees (in Chinese), J. China Univ. Sci. Technol. 28 (1998) 513–518] and Guo [J.M. Guo, On the Laplacian spectral radius of a tree, Linear Algebra Appl. 368 (2003) 379–385] give the first four trees in Tn, ordered according to their Laplacian spectral radii. In this...

متن کامل

Some remarks on the sum of the inverse values of the normalized signless Laplacian eigenvalues of graphs

Let G=(V,E), $V={v_1,v_2,ldots,v_n}$, be a simple connected graph with $%n$ vertices, $m$ edges and a sequence of vertex degrees $d_1geqd_2geqcdotsgeq d_n>0$, $d_i=d(v_i)$. Let ${A}=(a_{ij})_{ntimes n}$ and ${%D}=mathrm{diag }(d_1,d_2,ldots , d_n)$ be the adjacency and the diagonaldegree matrix of $G$, respectively. Denote by ${mathcal{L}^+}(G)={D}^{-1/2}(D+A) {D}^{-1/2}$ the normalized signles...

متن کامل

Some results on the ordering of the Laplacian spectral radii of unicyclic graphs

A unicyclic graph is a graph whose number of edges is equal to the number of vertices. Guo Shu-Guang [S.G. Guo, The largest Laplacian spectral radius of unicyclic graph, Appl. Math. J. Chinese Univ. Ser. A. 16 (2) (2001) 131–135] determined the first four largest Laplacian spectral radii together with the corresponding graphs among all unicyclic graphs on n vertices. In this paper, we extend th...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Discrete Mathematics

دوره 308  شماره 

صفحات  -

تاریخ انتشار 2008